Коэффициент теплопередачи окон ПВХ

Окна для энергоэффективных зданий

Запись дневника создана пользователем evraz, 02.05.14
Просмотров: 10.966, Комментариев: 3

Окна для пассивного дома – высочайшее качество светопрозрачных строительных конструкций

Пояснения к рисунку: Ug – коэффициент теплопередачи остекления (Вт/м2К); R0 – сопротивление теплопередаче, (м2ºС)/Вт; g – коэффициент общего пропускания солнечной энергии. Данные температуры на внутренней поверхности рассчитаны в таблице для наружной температуры -10 °C и внутренней 20 °C.

На рисунке представлено развитие остеклений: от одинарного остекления (крайнее слева) до остекления, соответствующего стандарту пассивного дома (крайнее справа). Только у остеклений такого качества даже в самые суровые морозы будут теплые внутренние поверхности. Незначительные потери энергии и улучшенный комфорт являются преимуществами остекления, соответствующего стандарту пассивного дома.

Температурное расслоение воздуха в помещении при использовании окон стандарта пассивного дома не наблюдается, при обычных же окнах оно значительно. Следовательно, отопительный прибор может быть размещен у внутренней стены, а не под окном, и, несмотря на это, будет достигнут оптимальный комфорт.

Тепловизионный снимок наружных стен пассивного дома с внутренней стороны. Все поверхности теплые: оконная рама (коробка), рама оконной створки и остекление. Даже по краю остекления температура не опускается ниже 15 °C, см. фото. (Фото: PHI, пассивный дом в г. Дармштадт, р-н Кранихштайн; в доме отопительные приборы стоят у внутренней стены)

Для сравнения окно в старом доме с “изолированным остеклением”: здесь температуры на поверхности составляют в среднем меньше 14 °C. Наглядно видны все дефекты монтажа – тепловые мосты, особенно на бетонной перемычке. (Фото: PH)

Для сравнения: двойное остекление с низкоэмиссионным покрытием (здесь показана установленная в наружную стену остекленная дверь) уже имеет более высокие температуры на внутренней поверхности (16 °C в середине). На снимке бросается в глаза плохая изоляция обычных оконных рам. Такие высокие теплопотери и низкие температуры на внутренней поверхности сегодня не допустимы. Оконные рамы стандарта пассивного дома имеют значительно лучшие характеристики.

Ни одна другая строительная конструкция не развивалась так стремительно в части качества теплозащиты как окно. Коэффициент теплопередачи Uw существующих на рынке окон уменьшился за последние 30 лет в 8 раз! (Или соответственно сопротивление теплопередаче R0увеличилось в 8 раз!)

Время заменять окна с одинарным остеклением

В начале 70-х годов большинство окон в Германии были с одинарным остеклением. Коэффициент теплопередачи таких окон составлял примерно 5,5 Вт/м2°C, ежегодная потеря тепла через 1 м2 окна равнялась приблизительно расходу энергии в размере 60 литров жидкого топлива. Однако не только потери тепла являются высокими. Из-за плохой изоляции холод проникает на внутреннию поверхность окна. Нередко температура там составляет ниже 0 °C и образуются ледяные узоры. Плохая теплоизоляция связана с низким комфортом внутри помещений и высоким риском повреждения оконных конструкций.

“Изолированное” остекление – улучшенная промежуточная стадия

Немного лучше были так называемые “изолированные стекла”, т.е. стеклопакеты с двумя стеклами. Их начали устанавливать в новостройках и модернизированных зданиях после первого нефтяного кризиса. Между двумя стеклами находился изолированный слой воздуха. Коэффициент теплопередачи был снижен таким образом до 2,8 Вт/(м²°C). Это означает, что по сравнению с одинарным остеклением потери тепла были уменьшены вполовину. Температура на внутренней поверхности стекла изолированных окон в самые холодные дни составляет 7,5 °C. Ледяные узоры больше не образуются, но поверхности окон имеют некомфортные температуры и в холодную погоду они влажные, т.к. точка росы ниже нормы.

Двойное остекление с низкоэмиссионным покрытием и заполнением стеклопакета инертным газом – это намного лучше, но еще недостаточно хорошо

Значительным достижением стало применение очень тонких металлических теплоотражающих покрытий, нанесенных на стекла с внутренних сторон межстекольного пространства стеклопакетов (английское название: покрытие – “low-e”). Благодаря этому тепловое излучение (теплообмен излучением) между стеклами было сильно снижено. Kроме того традиционное заполнение стеклопакета осушенным воздухом было заменено менее теплопроводным инертным газом, например аргоном. С приходом на рынок такие“теплоизоляционные остекления” применялись на основании Постановления по тепловой защите от 1995 г. как стандартный продукт почти во всех новостройках и модернизированных зданиях. Интересным фактом является то, что подорожание такого остекления в связи со значительным улучшением его качества не произошло. Такое стандартное окно с деревянной или пластиковой рамой и oбычным соединением по краю остекления имеет коэффициент теплопередачи между 1,3 и 1,7 Вт/м2К. Таким образом, потери тепла по сравнению с обычными стеклопакетами с двумя стеклами еще раз вдвое уменьшились. Средняя температура на внутренней поверхности составляет даже при сильном морозе приблизительно 13 °C. Однако ощущение холодного воздуха у окна остается еще заметным и не исключено температурное расслоение воздуха в помещении, вызывающее дискомфорт.

Тройное остекление с двумя низкоэмиссионными покрытиями и заполнением инертным газом – оптимальное качество для перспективного строительства и модернизации

Прорывом в энергоэффективном строительстве в Германии стало создание теплоизолированного тройного остекления. В таком стеклопакете две камеры с заполнением инертным газом и два низкоэмиссионных покрытия (low-e), коэффициент теплопередачи U составляет от 0,5 до 0,8 Вт/м2°C. Если необходимо достичь таких же показателей не только на стекле, но и на всем окне, то для этого нужно применить хорошо теплоизолированные оконные рамы, а также теплоизолированное соединение по краю остекления. В результате получается “теплое окно” или “окно стандарта пассивного дома”. Годовые теплопотери такого окна для условий Германии снижаются до менее 7 литров жидкого топлива на квадратный метр оконной поверхности, что составляет одну восьмую от первоночального показателя. Если учитывать то, что попадающие через окно стандарта пассивного дома солнечная энергия значительно уменьшает теплопотери даже в зимнее время, то чистые потери через окно такого качества пренебрежимо малы. Кроме того, теплоизолированное тройное остекление “окупается” сегодня в Германии уже при покупке одного окна исключительно засчет достигнутой экономии энергопотерь.

Это не случайность, что чистые энергопотери в пассивном доме пренебрежимо малы – так малы, как и в других строительных конструкциях с хорошей теплоизоляцией. Качество теплоизоляции наружной оболочки (с коэффициентом теплопередачи приблизительно 0,15 Вт/м2К) точно соответствует хорошим теплоизоляционным свойствам окон стандарта пассивного дома. Благодоря качеству этих двух составляющих в целом возможно строительство пассивных домов во влажном и холодном климате Средней Европы. Результатом этого является дом, в котором тепло и комфортно, и в котором благодаря возврату тепла из вытяжного воздуха создается значительная экономия на отопление.

Окна стандарта пассивного дома отличаются не только малыми теплопотерями, но и также улучшенным комфортом. При сильном морозе температура на внутренней поверхности окна не опускается ниже 17 °C. В этих условиях больше не ощущается “холодного излучения” от окна. Кроме того, в комнате устраняется некомфортное температурное расслоение воздуха, даже тогда, когда под окном не стоит нагревательный прибор. Конечно, при этом должны быть соблюдены и другие критерии пассивного дома, как, например, герметичность и отсутствие тепловых мостов. В этих условиях гарантирован температурный комфорт в помещении, независимо от вида притока тепла. Это стало возможно благодаря улучшенным окнам.

Окна стандарта пассивного дома – это высококачественные продукты, которые были разработаны более чем 40 предприятиями и в настоящий момент продаются на рынке. Экономия энергии по сравнению с обычными окнами составляет не единичные проценты, а больше 50%. Благодаря этим окнам можно экономить не только энергию и наличные деньги, но и защищать окружающую среду. Окна стандарта пассивного дома являются примером эффективной техники, которая была создана в Европе и, производство которой создает рабочие места в регионах, а также одновременно ослабляет зависимость от энергетических рынков.

Читать еще:  Установка оконных петель – все, что нужно знать

по материалам passiv-rus ru

Пластиковая дистанционная рамка
Пластиковая дистанционная рамка – это одна из последних разработок в области оконных технологий. Она обладает коэффициентом теплопроводности 0.16 – 0.20 Вт/кв.м∙°С (для сравнения, алюминиевая 200 – 220 Вт/кв.м∙°С). При ее использовании исключается образование термического мостика по краю стеклопакета.

Как и алюминивая рамка, пластиковая дистанционная рамка предназначена для выполнения следующих функций:

  • обеспечение в стеклопакете определенных расстояний между стеклами,
  • обеспечение первичного каркаса,
  • обеспечение камер для осушителя.

Так как краевые зоны стеклопакета – это наиболее проблемные зоны, связанные с потерями тепла, то применяя пластиковую дистанционную рамку, можно значительно снизить риск появление конденсата. Это достигается за счет величины коэффициента теплопроводности твердого пластика (0.16 – 0.17 Вт/кв.м∙°С), из которого выполнена пластиковая дистанционная рамка. По сравнению с алюминиевой дистанционной рамкой, потери тепла снижаются примерно в 10 раз.

Еще одним показателем качества соединения стеклопакета является прочность и долговечность. При применении пластика, линейное расширение рамки уменьшается в 3-3.5 раза, по сравнению с алюминием. При этом устраняется излишнее напряжение в угловых зонах, а это значительно продлевает службу стеклопакета.

Изменение нормативов по коэффициентам сопротивления теплопередаче в регионах

Валерий Козионов, технический эксперт Декёнинк РУС, комментирует изменение нормативов в обновленной редакции основополагающего документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий» и новые требования к энергоэффективности светопрозрачных конструкций.

Для чего нужны более теплые стены и более теплые окна, зачем повышать нормативный коэффициент сопротивления теплопередаче конструкции? На первый взгляд – всё очевидно. Тем не менее, давайте разберемся.

Для начала, немного основ строительной физики. Если наружная стена (или ограждающая конструкция в виде окна) в течении продолжительного времени подвержена действию постоянных температур, но со стороны помещения и со стороны улицы температуры различные (стационарное состояние), то благодаря разности температур (градиенту температур) через строительную конструкцию образуется тепловой поток от высшего энергетического уровня к низшему. Тепловая энергия течет от тепла к холоду.

В зависимости от теплотехнических характеристик системы наружной стены, выраженной через коэффициент теплопроводности материала стены l (лямбда), Вт/(м °С) в поперечном сечении стены устанавливается характерное распределение температур.

В более сложных ситуациях (многомерные тепловые потоки) по сравнению с невозмущенной зоной стены (одномерные тепловые потоки) как, например, область присоединения окна к наружной стене, изображение распределения температур может быть представлено только частично. Поэтому предлагается изображение изотерм. Изотерма – это линия, образованная точками с одинаковой температурой. Изотермы рассчитываются и изображаются с помощью программ по методу конечного элемента. На основании расчета изотерм могут быть определены тепловые потоки и распределение температур в поперечном сечении строительной конструкции.

Рис.1 Пример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стене Повышая нормативный коэффициент сопротивления теплопередаче R (м 2 °С/Вт), законодатели предписывают архитекторам, проектировщикам и строителям применять материалы и конструкции с более низкой теплопроводностью, которые с одной стороны сохраняют все более ценную энергию для подогрева помещения зимой или для охлаждения их летом, а с другой – повышают температуру на поверхности ограждающих конструкций со стороны помещения, предотвращая риск образования конденсата и грибка и связанные с ними проблемы.

Немного о конденсате и грибке. Воздух обладает свойством в зависимости от своей температуры максимально насыщаться определенным количеством воды в форме водяного пара (объем насыщения). При этом тёплый воздух может насытиться большим количеством воды, чем холодный.

Относительная влажность воздуха обозначает содержание влаги в воздухе по отношению к объему насыщения (= максимально возможное количество). Например, содержание влаги в количестве 8,65 г/м 3 при 20°С соответствует относительной влажности 50%. Для воздуха помещения с температурой 20°С и относительной влажностью 50% это означает, что в воздухе содержится 50% максимально возможного количества воды (17,3 г/м 3 ) в форме водяного пара.

Конденсат образуется в том случае, если воздух из-за охлаждения более не в состоянии сохранять первоначальное количество воды. Температура, при которой начинается этот процесс, называется температурой точки росы или точкой росы.

Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN 4108-3, таблица А.4) При температуре воздуха 20 °С и относительной влажности 50 % температура точки росы составляет 9,3 °С или округлённо 10 °С (→ 10 °С – изотерма для оценки опасности образования конденсата на поверхности конструкции).

Во избежание конденсата, 10°С – изотерма должна находиться внутри конструкции.

Образование грибка является не только следствием образования конденсата. Исследования показывают, что при условиях благоприятных для роста грибка вследствие капиллярной конденсации грибок может образовываться уже ранее. Благоприятные условия – это относительная влажность воздуха ок. 80% установившаяся в течении длительного времени в приповерхностной зоне с подходящей питательной средой (например, домашняя пыль) для грибка.

Рис. 3 Взаимосвязь температуры точки росы и критической температуры для грибка Как видим из вышесказанного, необходимость повышать теплозащитные свойства ограждающих конструкций — это жизненная необходимость, особенно для стран с таким климатом, как в России.

14.12.2018 Минстрой РФ подписал приказ о введении обновленной редакции основополагающего нормативного документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий». Редакция была разработана Научно-исследовательским институтом строительной физики РААСН совместно с рядом представителей строительной индустрии, научно-исследовательскими институтами и содержит новые требования к энергоэффективности светопрозрачных конструкций, основанные на длительном цикле натурных испытаний.

Требования к сопротивлению теплопередаче светопрозрачных ограждающих конструкций в России устарели по отношению к качеству продукции, представленной на современном рынке остеклений. Окна, выбранные по старым нормам, не могут обеспечить нужный уровень температур внутренней поверхности, не позволяют эффективно сохранять тепло, применять широкие стеклопакеты для повышения шумоизоляции, создать надежный монтажный шов с перекрытием зон холодных изотерм и тепловых мостов.

Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкций Новая редакция учитывает современные материалы, методы остекления и дает возможность экономии энергии за счет новых технологий. Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России.

Рис.5 Изменения по определению базовых R0 тр. (м2°С/Вт) для жилых зданий ГСОП рассчитываются по прежней формуле (5.2) СП 50.13330.2012. Базовые значения требуемого сопротивления теплопередаче при ГСОП в интервалах от 2000 до 12000 (°С×сут/год) следует определять методом линейной интерполяции.

Так, согласно изменённому СП 50.13330 требуемое приведенное сопротивление теплопередаче светопрозрачной конструкции R0 тр. (м 2 ° С/Вт), например, для Краснодара (ГСОП = 2538 сут.) составит 0,53 (ранее 0,34).

Приказ об утверждении изменений подписан Министром строительства и жилищно-коммунального хозяйства Российской Федерации Владимиром Якушевым 14 декабря 2018 г., а обновлённый СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» вступит в силу уже через 6 месяцев со дня публикации на сайте Росстандарта.

Читать еще:  Выходы на крышу и зенитные фонари VELUX купить в Москве, Химках, Сходне, Зеленограде, Солнечногорске, Клину, Долгопрудном, Лобне, Дмитрове, Красногорске, Нахабино, Дедовске, Истре, цены

Новые требования идут в ногу с трендом энергосбережения, позволяют строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности.

Российские производители оконных профилей и стеклопакетов готовы поставлять комплектующие для окон и дверей по новым нормам.

Новые строительные правила предписывают строителям приобретать более дорогие окна и двери и при этом не увеличить стоимость жилья.

Фолькер Гут, генеральный директор Deceuninck в России

– Современные технологии позволяют изготовить доступные по цене окна из многокамерных ПВХ профилей, с 3-мя контурами уплотнителей, увеличенным до 25 мм заглублением стеклопакета и с двухкамерными стеклопакетами с многофункциональными стеклами. Приведенный коэффициент сопротивления такого окна в районе единицы. Одно из таких решений – инновационный профиль Deceuninck «Фаворит Спэйс», который неоднократно отмечался профессиональным сообществом и экспертами как энергоэффективный. Увеличенная ширина профиля 76 мм, 6 воздушных камер и дополнительный 3-й контур уплотнителя в окне «Фаворит Спэйс» надежно сохраняют тепло и спасают от сквозняков. В дополнение ко всему окна «Фаворит Спэйс» экологичны и надежны: их профиль производится без использования свинца и рассчитан на 60 лет эксплуатации.

Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, Россия Портал ОКНА МЕДИА рекомендует: Руководство строительной компании ЮИТ посетили завод партнера Deceuninck в Екатеринбурге

Сопротивление теплопередаче окон: проводим расчет самостоятельно

Каждый современный житель хочет, чтобы его дом был не только уютным, но и теплым. Специально для этого проводится монтаж «теплого пола», а также применяется комплекс работ по утеплению стен, балконов и кровли. Но при выборе оконных конструкций чрезвычайно важно обращать внимание на приведенное сопротивление теплопередаче. Сегодня почти все изготовители такой продукции в качестве рекламы используют громкие фразы, обещающие сделать помещения дома максимально теплыми. В советские времена абсолютно в каждом доме были деревянные окна, которые приходилось дополнительно утеплять клейкими лентами и различными тканевыми материалами. Но сейчас все изменилось, и такие конструкции стремительно заменяют изделия из ПВХ от различных производителей. Таблица сопротивления для светопрозрачных блоков

Именно поэтому почти все рекламные кампании, агитирующие приобрести ту или иную продукцию, направлены на то, чтобы описывать достоинства материалов рамы (это может быть древесина, прочный пластик или высококачественный алюминий), определенный класс профилей в зависимости от количества камер, которые имеет каждое конкретное изделие, а также, разумеется, превосходные теплоизоляционные характеристики. Но тут сразу же возникают некоторые противоречия, ведь, как известно, оконная конструкция состоит не только из рамы. Основная часть изделия – это большая остекленная поверхность, которая изготовлена из всевозможных типов стекол или же цельных стеклопакетов, имеющих совершенно иной коэффициент сопротивления.
” alt=””>

Таблица нормируемого сопротивления оконных конструкций РФ (отопительный сезон)

Почему важно правильно определить теплопередачу оконной конструкции?

Как уже было сказано, главной функцией любого стеклопакета является удержание тепла в помещениях дома. Существует определенное суждение, что пластиковые изделия в разы теплее, нежели деревянные конструкции. Но это мнение субъективно, потому что материал рамы, как уже было сказано, играет далеко не самую важную роль. Формула, описывающая данный параметр, предельно проста и известна нам еще с программы по физике за 8 класс. Она описывает силу потока энергии, который покидает помещение сквозь преграду в 1 квадратный метр площади при разнице температурных показателей в 1 градус. Стоит отметить, что чем меньше показатель U, тем, соответственно, лучше приведенное сопротивление. Разобраться в расчетах без проблем сможет любой опытный специалист в строительной отрасли, но простой человек может счесть формулу достаточно сложной и замысловатой. Но наши соотечественники привыкли жить по принципу «чем больше показатель, тем лучше» либо же просто доверяют тому, что каждый поставщик указывает класс изделия и его характеристики. Но они не всегда соответствуют действительности, поэтому для уверенности стоит перепроверить эти сведения. Именно поэтому в последнее время в оборот была введена величина, имеющая название «сопротивление теплопередаче». Для того чтобы обозначать ее в формуле, используют символ R. Минимальный коэффициент теплопередачи окон ПВХ

Формула выглядит следующим образом: R = 1/U.

Пример расчетов

Для того чтобы привести пример, можно выбрать обычное одностворчатое окно, имеющее ширину W = 1 метр 40 сантиметров, а высота H = 1 метр, выполненное из трехкамерного профиля VEKO EUROLINE с шириной ограждающей рамы-створки 1,13 миллиметра. Учитывая неоднородность изделия, первым делом важно определить сопротивление каждого участка и выяснить их класс и площадь.

В большинстве случаев работа ведется с 2 зонами (однородными по своей структуре):

  • зона рамы и стекла (в общем);
  • зона стеклопакета отдельно.

Для расчета первого показателя используем следующую формулу:

F1 = [1,4 x 0,113] + 1,4 x 0,113 + [1 – 0,113 х 2] х 0,113 + [1 – 0,113 х 2] х 0,113 = 0,491 324.

А вторая зона определяется следующим образом:

F2 = [1,4 – 0,113 х 2] х [1 – 0,113 х 2] = 0,908 676 метра квадратного.

В результате мы получаем:

F1 = 0,491 324 метра квадратного;

F2 = 0,908 676 м2;

Ro2 = 0,32 м2С/Вт.
” alt=””>

Схема сравнительных характеристик стеклопакетов

Как итог можно отметить, что, несмотря на то, что выбранная оконная конструкция имеет отличный показатель теплопроводности рамы, теплопроводность цельного продукта оставляет желать лучшего. Благодаря проведению таких расчетов появляется возможность должным образом оценить коэффициент теплопроводности, а главное, то количество тепла, которое будет удерживаться в помещении на протяжении определенного времени. При выборе самой конструкции обязательно обращайте внимание не только на внешний вид и габариты изделия, но и на теплосберегающие свойства, которые будут обеспечивать оптимальный микроклимат. Продукция бюджетного класса часто имеет высокий показатель, поэтому в процессе эксплуатации жильцы квартир и домов, в которых был проведен монтаж пластиковых окон, нередко жалуются на то, что даже изделия ПВХ не способны должным образом сохранять тепло. Если вы столкнулись с такой проблемой, то не спешите менять стеклопакеты. Первым делом проведите расчеты и обязательно проверьте, насколько правильно был осуществлен монтаж и нет ли видимых щелей между проемом и окном. Таблица характеристик деревянных окон со стеклопакетами

Проведение расчетов: самостоятельно или обратиться к специалисту?

Необходимо сказать, что определить сопротивление теплопередаче окон самостоятельно, не имея опыта и навыков в этом деле, не так просто. Лучший и наиболее оптимальный вариант – обратиться за помощью к специалисту, который наверняка знает, как именно проводить расчеты, чтобы в результате не было никаких ошибок, а погрешности были минимальными. Если у вас нет знакомых в строительной отрасли, а финансовое положение не позволяет оплатить услуги профессионалов, то вы можете воспользоваться специальным калькулятором, который в режиме реального времени поможет определить, насколько соответствуют характеристики изделия приведенному сопротивлению. Кроме того, методика расчетов в таком случае весьма проста и понятна. Разобраться в ней можно самостоятельно, поэтому определить площадь однородных зон для каждого конкретного элемента можно будет достаточно быстро. Практически все теплотехнические свойства представлены в тематических таблицах и вырезках из нормативно-технической документации. Они размещены в свободном доступе в Интернете на различных форумах и строительных порталах. Схема размещения термопар и тепломеров на образце оконного блока (по ГОСТу).

Читать еще:  Как замерить жалюзи на пластиковые окна

Полезная информация и рекомендации

Важно отметить, что специалисты в области строительства выделяют несколько типов сопротивления, а именно:

  • приведенное;
  • термическое;
  • нормативное.

” alt=””>
Они все отличаются характеристиками измерения, а также способом обеспечения теплоотдачи. Разберем детально каждый из них. Первым делом следует сказать, что сегодня на территории нашего государства действует нормативно-техническая документация, которая устанавливает требования к тепловой защите сооружений (Свод правил 50.13330.2012).

Базовые значения необходимого сопротивления для сооружений

Выбор окон, в зависимости от региона проживания

Как же выбрать окно в зависимости от региона Вашего проживания?

Какие параметры должны повлиять на Ваш выбор, какая разница между городами находящихся в одной стране, но в абсолютно разных регионах и климатических зонах?

Давайте разберемся по порядку.

Окно – это конструкция состоящая в основном из оконной рамы (рама и створка может быть из ПВХ, дерева или алюминия «теплого») и стеклопакета. Каждый из этих материалов имеет свои показатели энергоэффективности (теплоизоляции), которые необходимо принимать во внимание, выбирая оконную конструкцию именно для Вашего региона.

Основная задача современных окон – это защита помещения от холода и посторонних звуков со стороны улицы не в ущерб светопрозрачности. Защита от холода достигается путем необходимой и достаточной для данного региона теплоизоляции окна.

Теплоизоляция – одна из основных функций окна, которая обеспечивает комфортные условия внутри помещения.

В России для оценки теплозащитных характеристик конструкций принято сопротивление теплопередаче Ro (м²•°C/Вт), величина, обратная коэффициенту теплопроводности k, который принят в нормах DIN.

Коэффициент теплопроводности k характеризует количество тепла в ваттах (Вт), которое проходит через 1м² конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/м² К. Чем меньше значение k, тем меньше теплопередача через конструкцию, т.е. выше ее изоляционные свойства.

И наоборот (для России) чем больше сопротивление теплопередаче Ro (м²•°C/Вт), тем лучше теплоизоляционные свойства окна. Необходимо это уяснить и использовать при выборе окна.

Какие же факторы влияют на значение сопротивления теплопередаче окна Ro (м²•°C/Вт)?

•габариты окна (чем больше габариты окна, тем больше будут потери тепла и хуже теплоизоляция);

•поперечное сечение рамы и створки (чем толще сечение створки/рамы, тем больше их сопротивление теплопередачи и всего окна в целом);

•материал оконного блока (разные материалы имеют различные Ro (м²•°C/Вт);дерево, ПВХ, алюминий «холодный», алюминия «теплый» с термомостом);

•тип стеклопакета (в т.ч. ширина дистанционной рамки стеклопакета, наличие селективного стекла и специального газа в стеклопакете, количество камер);

•количество и местоположение уплотнителей в системе рама/створка (чем лучше и плотнее прилегают уплотнители, тем меньше возможных продуваний).

От значения показателей Ro зависит и температура поверхности ограждающей конструкции, обращенная внутрь помещения. При большой разнице температур происходит излучение тепла в сторону холодной поверхности.

Плохие теплозащитные свойства окон неизбежно приводят к появлению холодного излучения в зоне окон и возможности появления конденсата на самих окнах или в зоне их примыкания к другим конструкциям. Причем это может происходить не только, в следствии, низкого сопротивления теплопередачи конструкции окна, но также и плохого уплотнения стыков рамы и створки.

Из этого можно сделать вывод: сопротивление теплопередаче Ro м²•°C/Вт окна в первую очередь влияет на его выбор. Сопротивление теплопередаче Ro для окна рассчитывается исходя из климатических параметров региона проживания, и могут сильно разниться:

Название города Продолжительность отопительного периода в градусо-сутках Минимально необходимое приведённое сопротивление теплопередаче оконной рамы, м2 •ºС/Вт
Краснодар 2 682 0,35
Липецк 4 727 0,50
Москва 4 943 0,56
Хабаровск 6 182 0,61
Мурманск 5 985 0,60
Сургут 6 321 0,62
Новосибирск 6 606 0,63
Благовещенск 6 671 0,65
Якутск 10 394 0,78

Оконные компании при изготовлении продукции в первую очередь принимают во внимание регион, в котором будут эксплуатироваться их изделия. Когда специалисты рассчитывают уровень суровости климата в регионе, они по специальной формуле находят числовое значение продолжительности отопительного периода в градусо-сутках. Чем больше числовое значение этого параметра, тем продолжительнее холода.

Оконный профиль (ПВХ, дерево, алюминий «теплый») должен обладать показателями приведённого сопротивления теплопередаче, соответствующими климату.

Оконная рама, конечно же, важна для изготовления качественного окна, но при этом не стоит забывать про стеклопакет. Он занимает около 80% всей площади окна. В зависимости от того, сколько стекол используется в стеклопакете, различают однокамерный (два стекла и одна воздушная камера между ними), двухкамерный (три стекла и две воздушные камеры).

Обычное стекло служит слабой преградой для потерь энергии, полученной от отопительных приборов (через обычное стекло уходит свыше 40% тепла), и оно слабо препятствует поступлению избыточной солнечной энергии в спальню (обычное стекло пропускает свыше 80% солнечного тепла).

Поэтому однокамерный стеклопакет, изготовленный из двух обычных стёкол, – не самый удачный выбор для России, так как при наружной температуре –26ºС и температуре воздуха в комнате +20ºС температура поверхности стекла со стороны помещения будет не выше +5ºС.

Будет казаться, что из окна дует. На самом деле это – конвекционный (теплообменный) сквозняк, результатом которого станет появление влаги (конденсата) на поверхности окна (о чем писалось ранее).

Чтобы сократить расходы на отопление и кондиционирование помещений были разработаны, так называемые, «селективные» стекла: I, K и другие виды стекла. Технология их изготовления предполагает, что на поверхность обычного стекла промышленным способом наносят специальные оптические (светопрозрачные) покрытия, которые не пропускают холод и жару, а также за счёт отражения инфракрасных (тепловых) лучей сохраняют внутреннюю температуру помещения на комфортном уровне. Различие между ними заключается в химическом составе покрытий и в эффективности их действия.

Более эффективным является I-стекло. На его поверхность в качестве покрытия нанесен оксид серебра. Благодаря этому, материал обладает очень хорошим значением приведённого сопротивления теплопередаче (в 2,5 раза большим, чем у обычного стекла) и отражает почти 80 % длинноволновых (инфракрасных) излучений.

Установка I-стекла в качестве внутреннего в стеклопакет заметно повысит его общую энергоэффективность:

Тип оконной рамы
(виды рам даны условно)
Приведённое сопротивление теплоотдачи окна, м²•°C/Вт
С однокамерным стеклопакетом, 24 мм, оба стекла обычные С двухкамерным стеклопакетом, 24–32 мм, все стёкла обычные С однокамерным стеклопакетом, 24 мм, I–стекло и обычное С двухкамерным стеклопакетом, 24-32 мм, K–стекло и обычные
«Стандартная» 0,39 0,51–0,53 0,61 0?79–0,81
«Средняя» 0,4 0,52–0,54 0,63 0,81–0,83
«Широкая» 0,41 0,53–0,55 0,65 0,83–0,87

Из таблицы видно, что однокамерный стеклопакет с I стеклом по энергосбережению почти равняется 2-х камерному стеклопакету с обычным стеклом. При этом вес стеклопакета остаётся таким же. Это снижает нагрузку на фурнитуру. А значит, увеличивает срок её эксплуатации. Но необходимо учитывать, что стеклопакет с I стеклом дороже обычного.

Перед покупкой и установкой светопрозрачной конструкции (окна) для начала определитесь с типом оконного профиля (ПВХ, дерево, алюминий «теплый», «холодный»).

Проконсультируйтесь с производителем, подходит ли этот профиль для Вашего региона по сопротивлению теплопередаче Ro (м²•°C/Вт). Выбор стеклопакета является вторым важным моментом, уточните у производителя, какие стеклопакеты могут быть установлены на выбранную Вами профильную систему.

И не забывайте оценку соотношения цены, качества и общей теплоизоляции выбранного Вами окна.

Ссылка на основную публикацию