Фундамент

Буронабивные сваи: виды, диаметры, расчет, изготовление

Несущая способность буронабивной сваи

Буронабивные сваи

Буронабивные сваи при возведении фундаментов применяются достаточно давно. Но лишь в последние годы особенности строительства в современных условиях сделали данную технологию одной из самых популярных и часто применяемых на самых различных объектах. Причины этого понятны и очевидны: высокие эксплуатационные и технические характеристики конструкций фундаментов, сооруженных с использованием буронабивных свай.

Буронабивные сваи – описание и область применения

Основная идея устройства фундаментов при помощи буронабивных свай – возведение несущих элементов не путем их забивки или вдалбливания в грунт как для забивных свай, а путем их создания непосредственно на месте, без негативных последствий, как правило, сопровождающих такую рода деятельность. Самое максимальное воздействие, оказываемое на почву – это бурение скважины, которое достаточно просто выполнить без привлечения громоздкой техники и сопутствующих этому отрицательных моментов.

Описанные выше свойства буронабивных свай делают их незаменимыми при строительстве в следующих условиях:

  • застройка жилых или промышленных кварталов в стесненных условиях города, когда устройство ленточного фундамента или монолитной плиты практически невозможно;
  • наличие слабых грунтов или сильно обводненной почвы, делающих невозможным использование других конструкций фундамента, кроме свайного;
  • строительство рядом с водоемами или на затапливаемых участках;
  • в случаях, когда геологические исследования показали глубокое залегание твердых пород, которые способны воспринять нагрузки строящегося здания;
  • в случаях сложного рельефа местности (перепад отметок по высоте, обрывы, грунты с большим содержанием камней и т.д.).

Во всех указанных случаях основным путем решения проблемы является устройство свайного фундамента. При этом предпочтительным вариантом является использование буронабивных свай.

Всем вышеперечисленным далеко не исчерпываются достоинства технологии устройства фундаментов при помощи буронабивных свай. Но для более подробного их изучения необходимо ознакомиться с существующими разновидностями данной технологии. Также фундамент можно изготовить при помощи винтовых свай.

Перед перечислением разновидностей конструкций буронабивных свай обязательно необходимо отметить, что все работы должны выполняться в соответствии со Сводом правил СП 24.13330.2011, в котором содержится актуализированная редакция СНиП 2.02.03-85 под названием «Свайные фундаменты». Именно в этих нормативных документах четко прописаны требования к фундаментам и правила производства работ по их устройству.

Виды свай

Существует несколько классификационных признаков буронабивных свай.

Так, по особенностям конструкции они делятся на:

  • цилиндрические сваи. Имеют форму правильного цилиндра и сечение, одинаковое на всю длину конструкции;
  • сваи с опорной подошвой. Главный характерный признак – больший диаметр нижней части сваи. Подобные конструкции имеют несколько большую устойчивость и несущую способность.

По технологии обустройства буронабивные сваи делятся на:

  • сваи, выполненные без оболочки. Данный вариант может применяться только в условиях крайне устойчивых и не склонных к обрушению или осыпанию грунтов, а также тогда, когда уровень грунтовых вод минимален;
  • сваи, выполненные с применением извлекаемой или несъемной оболочки. Может применяться практически везде, в большинстве случаев используется съемная или извлекаемая оболочка в виде обсадной трубы.

Достаточно часто буронабивные сваи используются в комбинированных фундаментах совместно с последующим устройством ростверка. По месту его расположения разделяют фундаменты:

  • с низким заглубленным в почву ростверком. Обычно опускаются в грунт ниже уровня промерзания, благодаря чему приобретают повышенную несущую способность;
  • с обычным ростверком, находящимся прямо на грунте;
  • с высоким ростверком, понятым над поверхностью земли. Высота подъема может варьироваться и составлять 20-30 см. Часто применяется при строительстве частных домов на сложном рельефе местности.

Пример выполнения буронабивных свай с ростверком приведен на следующем видео:

Достоинства фундамента на сваях

Использование буронабивных свай при устройстве фундамента позволяет получить ряд преимуществ:

  • низкая стоимость работ при одновременно высокой несущей способности и надежности конструкции;
  • возможность применения практически на любом типе грунта;
  • длительный срок эксплуатации (не менее 100 лет);
  • возможность проведения работ в сжатые сроки и даже в холодное время года (при использовании специальных добавок в процессе бетонирования);
  • отсутствие динамически нагрузок на грунт, что позволяет использовать технологию рядом с существующими зданиями и сооружениями или для усиления требующих этого конструкций фундамента;
  • возможность сохранить существующее благоустройство в виду отсутствия применяемой тяжелой техники (при частном строительстве). Также важно то, что при этом варианте возможно выполнение работ своими руками, без привлечения профессиональных строителей.

Перечисленными плюсами достоинства технологии возведения фундаментов с использованием буронабивных свай не исчерпываются, однако и этого перечня достаточно для того, чтобы понять причину популярности данной технологии.

Недостатки фундамента

Как и у любой применяемой технологии, у буронабивных свай также присутствуют определенные минусы:

  • относительно большой перерасход бетона, связанный с тем, что почва рядом с изготавливаемыми сваями не уплотняется;
  • большое количество трудоемких ручных процессов и достаточно серьезная технологическая сложность производства работ;
  • необходимость тщательного контроля над всеми этапами изготовления буронабивных свай;
  • сильная зависимость несущей способности свай от качества бетона и свойств грунта (информацию о качестве бетона, а также дополнительным требованиям к бетону и его наполнителям можно узнать из этой статьи), что приводит к заложению дополнительного запаса по надежности и, соответственно, еще большему расходу бетона.

Изготовление свай

Пока не упоминалось еще одно несомненное достоинство буронабивных свай – универсальность технологии.

Она заключается в том, что ее можно одинаково успешно применять как на крупных промышленных объектах – с использованием серьезной буровой и прочей техники, так и при строительстве небольших частных домов, большую часть работ выполняя при этом вручную с минимальным привлечением машин и механизмов.

Один из примеров выполнения работ на небольшом объекте с привлечением ямобура показан на видео:

Расчет буронабивных свай и их несущая способность

При использовании технологии на серьезных крупных объектах все необходимые параметры закладываются при проектировании, обязательно выполняемом в таком случае. Несущая способность свай, изготавливаемых механизированным способом, достигает 200-400 тонн, порой доходя до показателя 600 тонн на одну сваю.

При частном строительстве обычная несущая способность сваи редко превосходит 10 тонн.

Диаметры свай

В соответствии с потребностями объекта меняется и диаметр используемых свай. Например, при частном домостроении применяются буронабивные сваи следующих диаметров и несущей способности:

Диаметр сваи, м Несущая способность, т Объем бетона, куб. м
0,40 7,536 0,2512
0,30 4,242 0,1414
0,25 2,946 0,0982
0,20 1,884 0,0628
0,15 1,062 0,0354

Каркасы и бетон для буронабивных свай. В случае применения технологии на крупных объектах используются сваи гораздо больших диаметров и значительно большей длины. Конкретные необходимые параметры берутся из проектно-сметной документации на объект.

При возведении частных домов для изготовления буронабивных свай рекомендуется использовать бетон класса В22,5 (ближайший аналог по марке – М300), в небольших зданиях и сооружениях допускается В20 и В15 (соответственно, М250 и М200). От качества материала во многом зависит качество получаемой буронабивной сваи.

Обязательным составным элементом любой буронабивной сваи является находящийся в ней сварной пространственный арматурный каркас. По требованиям СНиП он должен представлять собой продольную арматуру, равномерно распределенную по всей окружности сваи. Минимальное количество арматурных стержней – 6, каждый диаметром 18 или более мм. Используется сталь класса АIII.

Данные требования являются обязательными при строительстве крупных объектов. При возведении фундамента для частного дома или бани требования менее строгие. В большинстве случаев используются 4-6 стержней арматуры диаметром 10-12 мм, перевязанных между собой или готовые треугольные металлические каркасы.

Стоимость работ

Стоимость работ по устройству фундаментов с использованием буронабивных свай может достаточно сильно различаться в зависимости от нескольких факторов:

  • время/сезон производства работ;
  • тип грунта;
  • размеры и вид возводимого здания;
  • удаленность от места производства бетона и т.д.

Обычная стоимость изготовления стандартной сваи длиной 2 м составляет:

  • при диаметре сваи 0,15 м – 3-3,5 тыс. рублей;
  • при диаметре 0,2 м – 4,2-4,6 тыс. рублей.

Использование устройства фундаментов с применением буронабивных свай позволяет получить надежную и крайне долговечную конструкцию с высокой несущей способностью в оптимальные сроки и при минимальных затратах.

Технология строительства фундамента на буронабивных сваях

Вопрос выбора фундамента стоит первым в числе тех, которые нужно решить при проектировании дома. От этого будут зависеть прочностные характеристики здания, его долговечность, не говоря уже о стоимости материалов и строительных работ. Какому же фундаменту отдать предпочтение? Как рассчитать глубину его заложения? Как учесть все нюансы и сделать всё с минимальными расходами?

Ленточный фундамент — один из наиболее широко применяемых в загородном строительстве типов фундаментов на данный момент. Технология его обустройства хорошо известна застройщикам, да и несущая способность вполне приемлемая. Однако вместе с тем он имеет несколько очень серьёзных недостатков. Главным из них является высокая трудоёмкость и немалый расход материалов. Кроме того, согласно строительному регламенту, подошва ленточного фундамента должна располагаться ниже границы промерзания грунта. В средней полосе с её умеренно-континентальным климатом этот показатель находится на отметке 1,2 метра. В более северных регионах России десятки кубометров бетона приходится заливать ещё глубже, чтобы застраховать фундамент от пучения в холодное время года. Ситуация ещё больше усложняется, если стройка осуществляется на слабом грунте. В таком случае даже очень заглубленный фундамент ленточного типа не спасёт. Он может попросту не достать до стабильного грунтового основания, которое смогло бы принять вес сооружения на себя. Риск просадок будет слишком велик, а затраты на строительство несоизмеримо высоки. Куда более разумным в данном случае видится сооружение буронабивных свай. Фундамент такого типа отличается большей глубиной проникновения, при этом обходится дешевле ленточного и может быть оборудован без привлечения тяжёлой спецтехники. В настоящей статье мы выясним, что же представляет из себя фундамент из буронабивных свай, как произвести связанные с его обустройством расчёты и на какие нюансы следует обратить внимание.

Принцип фундамента

Основная идея фундамента на буронабивных сваях состоит в том, чтобы использовать вместо горизонтально уложенных бетонных лент высокие столбики-стойки. С их помощью можно добраться до прочных грунтовых пород, сняв при этом большую часть нагрузки с верхнего грунтового слоя. Для объединения отдельных колонн в единую несущую конструкцию применяется ростверк — отлитая из бетона лента, проходящая через изголовья всех буронабивных свай и усиленная армирующим каркасом.

Типы буронабивных свай

Несмотря на схожие функции, буронабивные сваи отличаются между собой по ряду признаков. Однако прежде чем углубиться в этот вопрос, давайте выясним, как именно они взаимодействуют с грунтом.

Буронабивные сваи принимают весовую нагрузку здания одинаково, но при этом передавать её на грунт они могут по-разному. В каких-то случаях большая часть нагрузки передаётся через нижний торец сваи, в других — равномерно распределяется по её боковым поверхностям. В зависимости от того, какая конструктивная часть больше вовлечена в работу, сваи делятся на два типа:

  • сваи-стойки;
  • сваи трения (висячие сваи).

Сваи-стойки опираются на прочный несжимаемый слой грунта. По СНиП 2.02.03-85 к таковым можно отнести скальные породы, а также твёрдоконсистентные водонасыщенные глины. В случае со сваями трения нижний торец не достигает прочного основания, в связи с чем большая часть нагрузки передаётся через стенки сваи. Из прочитанного может сложиться впечатление, что такой способ передачи нагрузки на грунт менее надёжен, однако это не соответствует действительности. На практике несущая способность конструкции определяется согласно расчётным методам, приведённым в СНиП 2.02.03-85 — настольном документе всех архитекторов и инженеров-проектировщиков, работающих в сфере загородного строительства. Недостаточное сопротивление грунта можно легко компенсировать повышением количества буронабивных свай. Главное — правильно рассчитать вес возводимого сооружения и определить тип породы в рамках инженерно-геодезических изысканий.

Определение несущей способности буронабивных свай

Несущая способность буронабивной сваи может быть рассчитана по формуле:

Fdu = R × A + u × ∫ ycf × Fi × Hi,

R – показатель сопротивления грунта под нижним торцом буронабивной сваи;
Fi – коэффициент сопротивления боковых плоскостей опорного торца сваи;
Hi – толщина грунтового слоя, взаимодействующего с боковыми поверхностями сваи;
A – площадь нижнего торца сваи;
u – сечение сваи;
ycf – коэффициент контакта породы по боковой поверхности сваи.

Существуют таблицы, в которых приводятся расчётные значения несущей способности буронабивных свай на различных типах грунта. Однако приводимые в этих таблицах значения лучше рассматривать в качестве ориентировочных, так как шаг между ними слишком велик. Для точного расчёта рекомендуем использовать приведённую выше формулу.

На данном этапе прочтения статьи у многих может возникнуть вопрос, в каких же случаях использование фундамента на основе буронабивных свай наиболее оправдано? Бытует мнение, что подобная конструкция в принципе не готова к воздействию на неё высоких нагрузок статического характера, а потому единственная сфера её применения — это возведение лёгких каркасных зданий и всевозможных сооружений вспомогательного характера. Это в корне неверно, и чтобы в этом убедиться, достаточно взглянуть на тысячи типовых городских девятиэтажек, фундаменты которых в большинстве своём представлены буронабивными сваями, скреплёнными ростверком. Конечно, несущая способность свай, изготовленных в полевых условиях без привлечения тяжёлых буровых установок, несколько ниже, чем у массивных армированных конструкций, лежащих в основе многоэтажек. Тем не менее, этой несущей способности с головой хватит, чтобы построить кирпичный загородный дом на 200 м 2 и более.

Порядок выполнения работ

Шаг 1. Расчёт

На данном этапе производится расчёт всех проектных параметров, необходимых для возведения свайного фундамента. Для этого высчитывается вес строящегося сооружения, после чего определяется количество свай и глубина их залегания.

ВАЖНО!

Согласно строительным нормативам, минимальное расстояние между центрами соседних буронабивных свай должно составлять три диаметра сваи. В противном случае несущая способность фундамента существенно снижается.

Шаг 2. Разметка

Чтобы шнек для буронабивных свай сделал скважины в точности там, где они предусмотрены проектом, участок предварительно размечают. Как правило, для этого используется верёвочный треугольник.

Шаг 3. Бурение

Высокопроизводительная буровая установка может пробурить скважину буквально за час. Работа с бензобуром займёт чуть больше времени, но зато позволит сэкономить средства. В некоторых случаях (при строительстве небольших зданий из дерева или пенобетона) можно и вовсе обойтись ручным буром.

Шаг 4. Обустройство опалубки

Опалубка необходима для того, чтобы застраховать грунт от возможного осыпания внутрь скважины. В ряде случаев, когда плотность грунта высока, можно обойтись без опалубки, что существенно ускорит процесс строительства фундамента. Главное — оборудовать опалубку наверху сваи, чтобы она стала впоследствии её оголовьем. Это можно сделать с помощью рубероида или любого другого материала со схожими свойствами.

Шаг 5. Сооружение подушки

Назначение подушки, отсыпаемой из песка или мелкозернистого щебня, состоит в том, чтобы свести к минимуму последствия морозного пучения. Высота подушки подбирается в зависимости от климатических особенностей региона. Для средней полосы России она, как правило, составляет 12-15 см.

Шаг 6. Армирование

Армокаркас для буронабивных свай играет важную роль в обеспечении прочностных характеристик фундамента. Бетон отличается высоким уровнем прочности на сжатие, в то время как арматура позволяет существенно повысить его прочность на растяжение и на сдвиг.

Шаг 7. Монтаж

В ход идёт шнек для буронабивных свай и цементный насос, подающий раствор в скважину под определённым давлением. Главное на данном этапе, чтобы в теле сваи не образовались пустоты, так как это может сказаться на несущей способности свайного фундамента.

Шаг 8. Отливка ростверка

Отлитый из бетона и усиленный армокаркасом ростверк превращает буронабивные сваи в единую несущую конструкцию, способную принимать вес здания и передавать его на глубокие слои грунта.

Расчет фундамента из буронабивных бутобетонных свай.

Расчет несущей способности бутобетонной буронабивной сваи.
Несущую способность буронабивных бутобетонных свайных фундаментов, воспринимающих вертикальную сжимающую нагрузку, определяют исходя из сопротивления материала фундамента и сопротивления грунта основания (под нижним концом и на боковой поверхности сваи), принимая меньшее из двух значений.
Несущая способность буронабивной сваи глубиной от 1,5 м до 3 м по грунту, работающей на осевую сжимающую нагрузку (Р), определяется по формуле:

P несущая способность сваи = 0,7 коэфф. однородности грунта х ( нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li – толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м)

– нормативное сопротивление грунта в тоннах под нижним концом сваи, принимается по таблицам №№1, 2, 3; fiн – нормативное сопротивление грунта на боковой поверхности ствола сваи, т/м 2 , принимаемается по таблице №4. При разных слоях грунта на глубине залегания сваи сумма сопротивления грунта на боковой поверхности сваи рассчитывается отдельно для каждого слоя грунта и полученный результат умножается на периметр сваи.

Вид грунта

Нормативное сопротивление (), т/м 2

Щебенистый (галечниковый) с песчаным заполнением по

Дресвяный (гравийный) из обломков кристаллических пород

Дресвяный (гравийный) из обломков осадочных пород

* Здесь и далее (если не указано иное) данные в таблицах приведены по таблицам №1-4 из ВСН 5-71 «Временные указания по устройству коротких буронабивных бетонных и бутобетонных свай для малоэтажных сельских зданий».

Вид грунта

Нормативное сопротивление (), т/м 2

Плотные пески

Пески средней плотности

маловлажные

влажные

маловлажные

влажные

Пески средней крупности

Для определения влажности песчаного грунта можно воспользоваться визуальными признаками степени влажности грунта:

Степень влажности песчаного грунта

Признаки влажности

На глаз не имеет влаги, при сжатии в руке и разжатии быстро рассыпается.

При сжатии в горсти дает ощущение холодной массы. При встряхивании в
ладони рассыпается на комки. Фильтровальная бумага, на которой лежит грунт, остается сухой
или только через некоторое время сыреет.

В руке при сжатии ощущается влажность. Грунту можно придать форму, которая
при разжатии держится некоторое время. Фильтровальная бумага, на которой лежит грунт, быстро сыреет,
образуя пятно.

На ладони при встряхивании расползается в лепешку.

При спокойном состоянии расползается и растекается.

* Указания по инженерно-геологическим обследованиям при изысканиях автомобильных дорог. М.-1963г.- По приложению №3.

Вид грунта

Коэффициент пористости

Нормативные сопротивления Rн, т/м 2 глинистых грунтов различной консистенции

Средняя глубина расположения грунта, м

Нормативные сопротивления Rн, т/м 2 глинистых грунтов различной консистенции

Консистенция грунта

Визуальные признаки

Твердая и полутвердая

При ударе грунт разбивается на куски, при сжатии в руке рассыпается.

Брусочек грунта при попытке его сломать заметно изгибается до излома, достаточно большой кусок грунта разминается с трудом.

Разминается руками без особого труда, при лепке хорошо сохраняет форму.

Грунт легко разминается руками, плохо держит форму при лепке.

Течет по наклонной плоскости толстым слоем (языком).

* Указания по инженерно-геологическим обследованиям при изысканиях автомобильных дорог. М.-1963г.- Приложение №1

Пример ориентировочного расчета свайного фундамента на буронабивных сваях . Требуется рассчитать расстояние между висячими (без опоры на скальные грунты) буронабивными короткими сваями (до 3 м) под здание с центрально приложенной вертикальной расчетной нагрузкой Np = 5,5 т/погонный метр.
Грунтовые условия, по данным инженерно-геологических изысканий представлены суглинками, залегающими с поверхности земли до глубины 3 м. Причем, до глубины 2 м – залегают суглинки тугопластичные, а с глубины 2м до 3 м – суглинки полутвердые. Далее, до глубины 9,2 м – пески крупные, плотные влажные. Грунтовые воды находятся на глубине 9,2 м от поверхности. Буровая скважина сухая.

Схема: Грунтовые условия и глубина буронабивных свай, расчет которых необходимо произвести.

Принимаем размеры свай (вариант A): диаметр буронабивной сваи d = 0,5 м; длина буронабивной сваи l = 3,0 м. Нагрузка, приходящаяся на одну сваю составляет x метров (шаг свай) х 5,5 тонн (нагрузка на погонный метр фундамента ).
Несущую способность набивных свай исходя из грунтовых условий рассчитывают по формуле

P несущая способность сваи = 0,7 коэфф. однородности грунта х ( нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li – толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м)

В плоскости нижних концов свай залегает крупный песок, плотный влажный с несущей способностью Rн = 70 т/м 2 .
Площадь сечения (основания) круглой сваи составляет S= 3,14 D 2 /4
S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м 2
Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м;
Дополнительный коэффициент условий работы mf = 0,8; В глинах и в скважинах с водой коэффициент работы сваи вместо 0,8 принимается равным 0,6. (Таблица 7.5 СП 50-102-2003 Проектирование и устройство свайных фундаментов).
Нормативное сопротивление грунта на боковой поверхности ствола, принимаемое по табл., составит:

  1. Для первого тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м 2 (См. строку для грунта на глубине 1 метр). Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м 2
  2. Для второго полутвердого слоя грунта (суглинка) глубиной от 2 до 3 метров (среднее – 2,5 метра) – от 4,2 до 4,8 т/м 2 . Принимаем самое малое значение сопротивления грунта с запасом 4,2 т/м 2

Несущая способность сваи по грунту будет:
Р = 0,7 х 1 [70 х 0,196 + 1,57 х 0,8 (1,2 х 2 + 4,2 х 1)] = 15,4 т.
Минимально допустимый шаг свай составит 15,4 тонны / 5,5 тонн/м =2,8 метра. Разумно достаточным будет использование шага между сваями 2,5 метра.

Посмотрим, как изменится несущая способность сваи по грунту при уменьшении диаметра сваи до 40 см (вариант Б):
Площадь сечения (основания) круглой сваи составляет S= 3,14 D 2 /4
S= 3,14 х 0,2 / 4 = 0,16/4 = 0,125 м 2
Периметр сваи u = 3,14 D = 3,14 x 0,4 = 1,25 м;
Несущая способность по грунту сваи диаметром 40 см составит:
Р = 0,7 х 1 [70 х 0,125 + 1,25 х 0,8 (1,2 х 2 + 4,2 х 1)] = 10,7 т. Такие сваи придется ставить через 2 метра.

Посмотрим, как изменится несущая способность сваи диаметром 50 см при уменьшении глубины ее заложения с 3 до 2-х метров (вариант В):

При глубине заложения на 2 метра, буронабивная свая будет опираться на слой полутвердого суглинка, а боковые поверхности ствола сваи будут соприкасаться с 2 метровым слоем тугопластичного суглинка.
В плоскости нижних концов свай залегает полутвердый суглинок, с несущей способностью Rн = 36 т/м 2 .
Площадь сечения (основания) круглой сваи составляет S= 3,14D 2 /4
S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м 2
Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м;
Дополнительный коэффициент условий работы mf = 0,8;
Нормативное сопротивление грунта на боковой поверхности ствола для тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м 2 (См. строку для грунта на глубине 1 метр). Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м 2
Несущая способность по грунту сваи диаметром 50 см и глубиной 2 метра составит:
Р = 0,7 х1 [36 х 0,196 + 1,57 х 0,8 (1,2 х 2) = 7 т. Такие сваи придется ставить уже через 1,2 метра.

Из вышеприведенного примера можно сделать два важных вывода:

Калькулятор для расчета буронабивного фундамента

Среди множества видов фундаментов, одна конструкция сочетает простоту, прочность и низкую стоимость. В ней дорогостоящий котлован заменен несколькими шурфами, а вместо массивного монолита установлен легкий ростверк. Однако его устройство требует точного расчета.

Чем массивнее будет дом, тем на большую глубину нужно бурить шурфы, тем большее количество бетонных столбов потребуется установить. Проектирование – трудоемкий процесс. Предлагаем использовать для расчета буронабивного фундамента калькулятор – программу, позволяющую производить вычисления по произвольно вводимым параметрам.

Проектирование столбчатого фундамента из буронабивных свай. Общие требования

Прочный фундамент должен удерживать строительную конструкцию и сохранять при этом статичное (неподвижное) положение в грунте. Сваи испытывают осевую и поперечную нагрузку. На них действует сила, величина которой зависит от полной массы строительной конструкции.

Способность фундамента к противодействию нагрузкам зависит от характеристик почвы и параметров свай, а именно:

  • от механических свойств грунтов, их склонности к усадке и расползанию;
  • от плотности установки опор в грунте;
  • от глубины залегания свайных подошв;
  • от площади опорных площадок.

На несущую способность почв влияют:

  • механические и физические параметры грунтов;
  • уровень подземных вод;
  • регулярное промерзание.

Чем сыпучее грунты, чем они влажнее, чем холоднее зимы, тем массивнее должен быть фундамент: шурфы бурятся глубже, а опоры делаются толще.

Тип грунтов определяется гранулометрическими параметрами почвы — удельным и объемным весом, пластичностью, влажностью, пористостью. Наиболее точные характеристики дадут лабораторные исследования образцов грунтов. Усредненные параметры приведены в таблице.

На способность столбов выдерживать нагрузку влияют факторы:

  • площадь основания сваи;
  • класс бетона;
  • степень армирования;
  • частота расположения.

Общие правила размещения столбов (свай):

  • Интервал между столбами должен в три раза превышать диаметров сваи;
  • Максимальный интервал составляет 3 м;
  • Минимальное сечение пятки сваи при длине элемента ростверка до 3 м составляет 0,3 м.

Определение характеристик и параметров фундамента

Для того, чтобы спроектировать фундамент, необходимо произвести расчеты по следующему алгоритму:

  1. Вычислить общую массу строящегося здания.
  2. Определить типы грунтов и вычислить их физико-механические параметры. Для этого берут образцы грунта на разной глубине из пробных скважин.
  3. Определить силу, с которой дом давит на фундамент.
  4. Произвести расчет несущей способности буронабивной сваи.
  5. Определить общее количество буронабивных свай и их конфигурацию.

Определение массы здания

1. Массу подсчитывают для каждого элемента конструкции – стен, перегородок, перекрытий и кровли. Сначала рассчитывают объем:

L, D, H – соответственно длина, ширина и высота элементов дома.

2. Вычисляют вес:

где p – плотность материала.

Для подсчета используют нормативные значения удельных масс. Плотность бетона составляет, к примеру, 2494 кг, а удельный вес древесины – 480–520 кг.

3. Рассчитывают вес полезной нагрузки – добавляют массу полов, штукатурки, декоративных отделочных материалов. Эта величина – постоянная, нормативная. Она зависит от общего размера помещений дома на всех этажах. Значение веса полезной нагрузки равно 150 кг/м2.

4. Увеличивают общую массу на коэффициент запаса прочности: конструкция должна противодействовать давлению снега зимой. Величину коэффициента берут из СП «Нагрузки и воздействия». Для средней полосы России значение коэффициента надежности равно:

  • 1,3 – для бетонных монолитных сооружений;
  • 1,2 – для сборных кирпичных и плитных конструкций;
  • 1,1 – для домов из бруса и бревен;
  • 1,05 – для сооружений из стали.

Определение физико-механических параметров грунтов

1. Несущую способность грунта можно определить по таблице 1:

Свая опирается на грунт не только нижним торцом, но и всей боковой поверхностью. Это сопротивление также учитывается при расчете фундамента.

Важно: глубина шурфов должна быть на 0,3–0,5 м большей, чем глубина промерзания. Обобщенные сведения о параметрах промерзания грунтов изложены в СП 131.13330.2012 Строительная климатология. Для выполнения расчетов пользуются актуализированными данными из СНиП 23-01-99 (действует с 2013 года).

Определение параметров, влияющих на несущую способность свай

Опоры изготавливаются из бетона марки 100 и выше. Для того, чтобы опора выдерживала поперечные нагрузки, ее армируют стальными прутками. Чтобы перераспределить и выровнять между сваями весовую нагрузку, придать конструкции жесткость, вершины опор обвязывают бетонным ростверком. Монолитную ленту армируют стальными прутками.

Определение количества опор фундамента и их конфигурации

Длину внутренних простенков прибавляют к общей величине протяженности фундамента. Впоследствии на базе этой величины будут определены интервалы между осями опор. Вычисления трудоемки, но их можно доверить компьютеру: машина точно рассчитает параметры фундамента.

Минимальное количество опор определено нормативной документацией: их необходимо обязательно установить в углах здания и в точках пересечения несущих стен.

Онлайн калькулятор позволит:

  • произвести расчет параметров ростверка;
  • определить необходимый объем бетона;
  • задать нагрузку, которую может выдержать одна свая;
  • установить диаметр, глубину залегания и количество опор для фундамента.

Пример: Определение сопротивляемости буронабивной сваи по материалу и по грунту

1) По материалу (Рмат):

Рмат = Кур*Sосн*Rм; (3)

Кур – индекс однородности грунтов (справочно равен 0,6);

Sосн – площадь основания опоры, м2 (определяется расчетным путем – 3,14 * r2); Площадь основания сваи диаметром полметра равна 0,196 м2;

– величина сопротивления бетона (табличная); Для бетона эта величина равна 400 кг/м2.

Подставляя значения в формулу, получаем: Рмат = 47 тонн.

2) По грунту (Ргр):

Ргр = Ког*Кур*(Rгосн*Sосн*p + Кду* Rгбок*h); (4)

Ког – индекс однородности грунта (справочно равен 0,7);

Кур – индекс условий работы (принимается за 1);

p – периметр (для трехметровой сваи с диаметром 0,5 м периметр равен 0,157 м);

Rгосн – сопротивление грунта, приведено в таблице 2; Для глины составляет 90 т/м2;

Sосн – площадь основания опоры, м2 (определена ранее – 0,196 м2);

Rгрп – величина сопротивления грунта под пяткой опоры (табличная); Для твердой глины это – 90 т/м2;

Кду – дополнительный индекс условий – 0,8;

Rгбок – значение несущей способности грунтов сбоку. Определяется как средняя взвешенная для каждой точки поверхности с интервалом в 1 метр. В нашем случае равно 3,85 тонн/м2.

h – толщина первого слоя грунта, прилегающего к фундаменту. Ее расчетное значение составит 2,3м.

Подставляя цифровые величины в формулу (2), получаем сопротивление сваи по грунту – 26,5 тонн. Эта величина – меньше, чем прочность материала. Ее и берут в качестве исходной для определения количества свай.

Пример: Расчет количества опор. Алгоритм вычислений

1) Определяем весовую нагрузку на 1 м ростверка (Нпм). Для этого полную массу дома относим к общему периметру ростверка.

2) Вычисляем межосевое расстояние между опорами: находим отношение значения несущей способность сваи к нагрузке на погонный метр фундамента.

В нашем случае опора способна выдержать вес в 26 тонн. Значит, на каждый метр ростверка, при соблюдении минимального интервала размещения свай в 3 метра, может прийтись до 8,33 тонн. На практике удельное давление, оказываемое обычным одноэтажным строением на фундамент, составляет 5,5–7 тонн.

Этот расчет буронабивных свай показал: мы можем выбрать более легкую конструкцию фундамента.

Читать еще:  Укладка плит перекрытия на фундамент или цоколь дома

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector